Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыДефектологияКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинШкольникамКарта сайта

Поздравляем!
Поздравляем нового Логобуржца Акулина со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

A Neural Network-Genetic Algorithm Hybrid Model for Forecasting   Meriem Djennas,Mustapha Djennas and Mohamed Benbouziane

A Neural Network-Genetic Algorithm Hybrid Model for Forecasting

56 страниц. 2012 год.
LAP Lambert Academic Publishing
Prediction of exchange rate is one of the most leading financial problems because of its intrinsic difficulty and practical applications. In recent years, many nonlinear models have been proposed in the literature to modify the results of prediction in order to improve the forecasting performance of high frequency exchange rates. Neural networks and chaotic models are among models that have been exploited and have shown promising results. The main objective of our research is to conduct a comparative evaluation of nonlinear models on a series of data and variables and to verify the predictive power of neural models under the same experimental conditions. This study uses a criterion to evaluate the model performance: the root of the mean squared error. Our study will be applied on US-Dollar/Kuwaiti-Dinar exchange rate.
 
- Генерация страницы: 0.04 секунд -