Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиДефектологияПостановка звуковФайлыКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинШкольникамКарта сайта

Поздравляем!
Поздравляем нового Логобуржца feia2727 со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Credit Risk Analytics: Predictive Modeling Techniques Comparison   Ravinder Singh

Credit Risk Analytics: Predictive Modeling Techniques Comparison

156 страниц. 2012 год.
LAP Lambert Academic Publishing
Credit Scoring studies are very important for any financial house. Both traditional statistical and modern data mining/machine learning tools have been evaluated in the credit scoring problem. Predictive modeling defaulter risk is one of the important problems in credit risk management. There are quite a few aggregate models and data driven models available in literature But very few of the studies facilitate the comparison of majority of the commonly employed tools in single comprehensive study. Additionally no study assesses the performance on more then two data sets and reports the results at the same time. So a macro or a simulator is designed which would work on multiple data sets and make the process of credit scoring transparent to the novice user. In initial stage, tools were compared using Dtreg predictive modeling software. Subsequently a SAS macro is developed to evaluate the effectiveness of tools available in SAS enterprise miner. The results revealed that...
 
- Генерация страницы: 0.06 секунд -