Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинКарта сайта

Поздравляем!
Поздравляем нового Логобуржца Светлечок со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Robustness and optimality in the context of cluster analysis   Wim De Mulder

Robustness and optimality in the context of cluster analysis

140 страниц. 2012 год.
LAP Lambert Academic Publishing
The topic of this book is the domain of cluster analysis. Two fundamental problems in this domain are studied. First, because cluster analysis is an unsupervised process, it is impossible to define a criterion, that is to be optimized in order to find the best clustering, in terms of deviations between given inputs and given desired outputs. Rather, one has to define such criterions, called cluster validation measures, in terms of desired, intuitive characteristics of a clustering. However, a general framework for such measures does not exist. Thus our first problem: can we define axioms for cluster validation measures? Another fundamental problem is related to the robustness of clustering. The cluster analysis task is typically performed by a clustering algorithm that has some parameters to be determined by the user, e.g. the number of clusters. As cluster analysis is an unsupervised process, we should not expect the user to know the most suitable values for these parameters....
 
- Генерация страницы: 0.29 секунд -