Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинКарта сайта

Поздравляем!
Поздравляем нового Логобуржца Лен-усь со вступлением в клуб!

Реклама

На сайте снова проблемы - решаем - ждите.
Не работает АВТОРИЗАЦИЯ - вход для пользователей не возможен.
Скорее всего, проблемы решить можно только переездом на другой сервер, другой компании.
А такой переезд возможен только в следующем месяце.
Пока других решений не вижу.
Извиняюсь за неудобства.

Ваш администратор.

КНИЖНЫЙ МИР

Efficient Reinforcement Learning in High Dimensional Domains   Md. Abdus Samad Kamal

Efficient Reinforcement Learning in High Dimensional Domains

96 страниц. 2011 год.
LAP Lambert Academic Publishing
This book presents development of efficient reinforcement learning methods in a postgraduate research. A reinforcement learning agent tries every state-action pair to find the optimal policy without prior knowledge about the domain. In large domains visiting every state-action pair is not feasible by an agent, therefore standard reinforcement learning approach is not applicable in solving many real world problems. Three new methods are proposed to make the learning efficient according to the characteristics of the problems: Task-Oriented Reinforcement Learning reduces the problem size by viewing it from the task's viewpoint that clarifies task relevant state variables. Symmetrical-Actions Reinforcement Leaning reduces the size of a learning problem by exploiting partial symmetry over action relevant state variables and representing actions values by a single function. Coordinated Multiagent Reinforcement Learning technique uses coordinator-agent hierarchy to keep the size of...
 
- Генерация страницы: 0.04 секунд -