Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыДефектологияКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинШкольникамКарта сайта

Поздравляем!
Поздравляем нового Логобуржца мари25 со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Discovering Clusters of Arbitrary Shapes and Densities in Data Streams   Amr Magdy,Nagwa M. El-Makky and Noha A. Yousri

Discovering Clusters of Arbitrary Shapes and Densities in Data Streams

116 страниц. 2011 год.
LAP Lambert Academic Publishing
The huge size of a continuously flowing data has put forward a number of challenges in data stream analysis. Exploration of the structure of streamed data represented a major challenge that resulted in introducing various clustering algorithms. However, current clustering algorithms still lack the ability to efficiently discover clusters of arbitrary densities in data streams. In this thesis, a new grid-based and density-based algorithm is proposed for clustering data streams. It addresses drawbacks of recent algorithms in discovering clusters of arbitrary densities. The algorithm uses an online component to map the input data to grid cells. An offline component is then used to cluster the grid cells based on density information. Relative density relatedness measures and a dynamic range neighborhood are proposed to differentiate clusters of arbitrary densities. The experimental evaluation shows considerable improvements upon the state-of-the-art algorithms in both clustering...
 
- Генерация страницы: 0.09 секунд -