Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинКарта сайта

Поздравляем!
Поздравляем нового Логобуржца Luidasha со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Surface Modeling Based on Spherical Splines   Jianbao Wu

Surface Modeling Based on Spherical Splines

112 страниц. 2011 год.
LAP Lambert Academic Publishing
Spline surfaces defined on planar domains have been studied for more than 40 years and universally recognized as highly effective tools in approximation theory, computer-aided geometric design, computer-aided design, computer graphics and solutions of differential equations. Many methods and theories of bivariate polynomial splines on planar triangulations carry over. However, spherical Bezier-Bernstein polynomial splines defined on sphere have several significant differences from them because sphere is a closed manifold much different from planar domains. This book is based on the dissertation completed in the University of Georgia. It includes following contents: an overview of spherical splines, the method to construct a unique spherical Hermite interpolation splines by using minimal energy method, the estimation of approximation order under L2 and L-infinity norms, methods of hole filling and scattered data fitting with global r-th order continuity. Many examples in this book have...
 
- Генерация страницы: 0.2 секунд -