Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинКарта сайта

Поздравляем!
Поздравляем нового Логобуржца Лен-усь со вступлением в клуб!

Реклама

На сайте снова проблемы - решаем - ждите.
Не работает АВТОРИЗАЦИЯ - вход для пользователей не возможен.
Скорее всего, проблемы решить можно только переездом на другой сервер, другой компании.
А такой переезд возможен только в следующем месяце.
Пока других решений не вижу.
Извиняюсь за неудобства.

Ваш администратор.

КНИЖНЫЙ МИР

Prediction of Properties of Low and High Molecular Weight Compounds   Carlo Giuseppe Bertinetto

Prediction of Properties of Low and High Molecular Weight Compounds

192 страниц. 2012 год.
LAP Lambert Academic Publishing
This work describes and discusses an innovative approach for the prediction of physical, chemical and biological properties of compounds, ranging from small molecules to large polymers. It is based on the direct and adaptive treatment of molecular structure by means of a Recursive Neural Network (RNN) to derive Quantitative Structure-Property/Activity Relationships (QSPR/QSARs). Chemical compounds are represented through appropriate graphical tools that bypass the need for numerical descriptors. The capabilities of this methodology are investigated by applying it to different predictive problems: the melting point of ionic liquids, the glass transition temperature of polymers and the toxicity of organic molecules. The results show that the graphical molecular representation was able to effectively model each case, providing accurate predictions using practically no background knowledge. The proposed structure-based RNN approach, it is argued, can provide a simple and general...
 
- Генерация страницы: 0.03 секунд -