Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыДефектологияКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинШкольникамКарта сайта

Поздравляем!
Поздравляем нового Логобуржца Monita со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Градуированные алгебры и 14 проблема Гильберта   И. В. Аржанцев

Градуированные алгебры и 14 проблема Гильберта

Летняя школа "Современная математика"
60x90/16 64 страниц. 2009 год.
МЦНМО
Учебное пособие посвящено классическим задачам коммутативной алгебры и теории инвариатов. Помимо начальных сведений о градуированных алгебрах, их рядах Пуанкаре и многочленах Гильберта, приводятся доказательства теоремы Маколея о размерностях компонент стандартных градуированных алгебр, формулы Молина для ряда Пуанкаре алгебры инвариантов конечной линейной группы и теоремы Нагаты - Стейнберга о том, что алгебра инвариантов некоторой явно заданной линейной алгебраической группы не является конечно порожденной. Последний результат является контрпримером к 14-й проблеме Гильберта. Пособие содержит более 40 задач, к каждой из которых даны подробные указания. Излагаемый материал доступен студентам младших курсов физико-математических специальностей университетов. Для студентов, аспирантов, преподавателей и научных работников, интересующихся алгеброй, геометрией и комбинаторикой.
 
- Генерация страницы: 0.04 секунд -