Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинКарта сайта

Поздравляем!
Поздравляем нового Логобуржца lena64410 со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Prediction Function With Time Factor In Collaborative Filtering   Dolly Sigroha and Chhavi Rana

Prediction Function With Time Factor In Collaborative Filtering

72 страниц. 2012 год.
LAP Lambert Academic Publishing
The vast growth of information on the Internet as well as number of visitors to websites add some key challenges to recommender systems such as providing accurate estimation, handling many recommendations efficiently and coping with the vast growth of number of visitors in the system.Therefore, new recommender system technologies are needed that can quickly produce high quality recommendations even for huge data sets. The task of Collaborative filtering is to predict the utility of services to the active user based on the user's previous likings or database of user votes from a population of other users.The accuracy of user similarity is the key to the success of the recommendation for computing predictions. Recommender model predict user interest with the help of prediction function Prediction is a numerical value expressing the likelihood of the active user prefers the item. At various sites, a users’ feedback is often continuously collected over a long period.By including some...
 
- Генерация страницы: 0.04 секунд -