Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

Главное меню
ДомойНовостиСтатьиДефектологияПостановка звуковФайлыКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинШкольникамЭлектроникаБыт.техникаКарта сайта

Поздравляем нового Логобуржца Dorofeeva со вступлением в клуб!



Metric Invariants for Camera Calibration   Jun-Sik Kim and In So Kweon

Metric Invariants for Camera Calibration

196 страниц. 2011 год.
LAP Lambert Academic Publishing
Reconstructing a metric structure of a scene from images has been one of the important topics in computer vision. In this book, we focus on a simple diagonal rank-deficient form of a 2D metric invariant, a conic dual to the circular points. By manipulating image features to constrain the simple form algebraically, the metric reconstruction can be achieved. We start from second order curves such as concentric circles or confocal conics to be used as basic features. By simply subtracting them, affine and metric properties of a plane are recovered. The geometric meanings of the resulting subtraction matrices are also investigated. The idea of algebraically manipulating features extend to an ``addition method'' using human recognizable features such as a rectangle. Its parallelism and orthogonality enables us to obtain information of the scene structure. As a generalization, we propose a framework to unify the geometric constraints used in camera calibration and in metric reconstruction....
- Генерация страницы: 0.05 секунд -