Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинКарта сайта

Поздравляем!
Поздравляем нового Логобуржца Luidasha со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

A Generic Framework for Medical Image Segmentation   Agam Adityas Nugroho

A Generic Framework for Medical Image Segmentation

56 страниц. 2012 год.
LAP Lambert Academic Publishing
Medical image segmentation is challenging and requires more sophisticated algorithms. Medical images are obtained by several different modalities and each of them has certain characteristics. For this reason, there is a need for developing a method which works for any kind of medical images. Deformable model is one of the most popular method in medical segmentation that requires some features (such as an edge) to be present along the boundary of the object, and pull the deformable curve toward that feature. This methods may be sensitive to the starting position and may leak through the boundary of the object if the edge feature is not salient enough in certain regions in the image. On the other hand, level set method evolves a contour implicitly by manipulating a level set function .In this book, we implemented level set region-based method to segment several images from different modalities. Its performance is tested by comparing the segmented results with those obtained by...
 
- Генерация страницы: 0.04 секунд -