Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинКарта сайта

Поздравляем!
Поздравляем нового Логобуржца bagira со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Statistical Analysis of Continuous Data Streams Using DSMS   Nadeem Akhtar,Faraz Khan and Faridul Haque Siddiqui

Statistical Analysis of Continuous Data Streams Using DSMS

88 страниц. 2012 год.
LAP Lambert Academic Publishing
Several applications involve a transient stream of data which has to be modeled and analyzed continuously. Their continuous arrival in multiple, rapid, time-varying and possibly unpredictable and unbounded way make the analysis difficult and opens fundamentally new research problems. Examples of such data intensive applications include stock market, road traffic analysis, whether forecasting systems etc. Data Stream Management Systems are specifically designed for handling continuous data streams. They can handle multiple, time-varying, unpredictable and unbounded streams which cannot be handled using traditional tools. In this work, we have used a Data Stream Management System- Stanford STREAM in three different application domain namely Road Traffic analysis, Habitat Monitoring analysis and Network Packet analysis. We have also used another DSMS, telegraphCQ, coupled with jamdroid, an open source road traffic analysis system, for mining road traffic data.
 
- Генерация страницы: 0.02 секунд -