Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыДефектологияКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинКарта сайта

Поздравляем нового Логобуржца СемАн со вступлением в клуб!



Statistical Models for Pattern Analysis   Alok Sharma

Statistical Models for Pattern Analysis

220 страниц. 2012 год.
LAP Lambert Academic Publishing
In this book a number of novel algorithms for dimension reduction and statistical pattern recognition for both supervised and unsupervised learning tasks have been presented. Several existing pattern classifiers and dimension reduction algorithms are studied. Their limitations and/or weaknesses are considered and accordingly improved techniques are given which overcome several of their shortcomings. Highlights are: i) Survey of basic dimensional reduction tools viz. principal component analysis and linear discriminant analysis are conducted. ii) Development of Fast PCA technique which finds the desired number of leading eigenvectors with much less computational cost. iii) Development of gradient LDA technique for SSS problem. iv) The rotational LDA technique is developed to reduce the overlapping of samples between the classes. v) A combined classifier using MDC, class-dependent PCA and LDA is presented. vi) The splitting technique initialization is introduced in the local...
- Генерация страницы: 0.04 секунд -