Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинКарта сайта

Поздравляем!
Поздравляем нового Логобуржца Лен-усь со вступлением в клуб!

Реклама

На сайте снова проблемы - решаем - ждите.
Не работает АВТОРИЗАЦИЯ - вход для пользователей не возможен.
Скорее всего, проблемы решить можно только переездом на другой сервер, другой компании.
А такой переезд возможен только в следующем месяце.
Пока других решений не вижу.
Извиняюсь за неудобства.

Ваш администратор.

КНИЖНЫЙ МИР

Automatic Categorization Of Amharic News Text   Surafel Teklu

Automatic Categorization Of Amharic News Text

108 страниц. 2012 год.
LAP Lambert Academic Publishing
Currently news items subject classification in Ethiopia is done manually by journalists which is time consuming task (although they are using computer system to store and dispatch information). This research experimented the application of machine learning techniques to automatic categorization of Amharic news items. Machine learning techniques, Naive Bayes and k Nearest Neighbor classifiers, were used to categorize the Amharic news items. 11, 024 news articles were used to do this research. To come up with good results text preparation and per-processing was done. Stop-word and words that occur in 3 or less documents were removed from the collection. Thirty-three percent of the data was used for testing purposes. The result of this research indicated that such classifiers are applicable to automatically classify Amharic news items. However, the classifiers work well when the categories contain almost evenly distributed news items. The best result obtained is by the naive...
 
- Генерация страницы: 0.03 секунд -