Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыДефектологияКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинШкольникамКарта сайта

Поздравляем!
Поздравляем нового Логобуржца Королёва со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Improved Reinforcement-Based Profile Learning for Documents Filtering   Yahya AlMurtadha and Md. Nasir Sulaiman

Improved Reinforcement-Based Profile Learning for Documents Filtering

120 страниц. 2012 год.
LAP Lambert Academic Publishing
today the problem is not the availability of the information but how to get the related information. A personalized information filtering system must be able to tailor to current interests of the user and to adapt as they change over time. This research has proposed a content-based personal information system that learns the user preferences by analyzing the content of the document and building the user profile. The proposed filtering system monitors a stream of incoming documents to deliver only those matches the user profiles. This system is called RePLS; an agent-based Reinforcement Profile Learning System with adaptive information filtering. The agent approach is used because of its autonomous and adaptive capabilities to perform the filtering. The core of this system is an improved term weighting method which is called “Purity term weighting” to measure the importance of the most suitable terms represented in each profile. The top selected terms are then used to filter the...
 
- Генерация страницы: 0.05 секунд -