Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыДефектологияКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинШкольникамКарта сайта

Поздравляем нового Логобуржца Акулина со вступлением в клуб!



Collaborative Recommender Agents   Miquel Montaner

Collaborative Recommender Agents

240 страниц. 2011 год.
LAP Lambert Academic Publishing
This thesis focusses on the study of AI techniques which improve the performance of recommender systems. Initially, a detailed analysis of the current state- of-the-art in this field has been carried out. This work has been organised as a taxonomy where existing recommender systems on the Internet are classified. Secondly, this thesis proposes a new CBR approach to recommendation. CBR is suitable for recommender systems due to its being based on experience and human reasoning. A forgetting mechanism is also proposed for case-based profiles that controls the relevance and age of past experiences. Thirdly, this thesis proposes the agentification of recommender systems in order to take advantage of interesting agent properties such as proactivity, encapsulation or social ability. Collaboration among agents is performed with the opinion-based filtering method and the collaborative filtering method through trust. Both are based on a social model of trust making agents...
- Генерация страницы: 0.06 секунд -