Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыДефектологияКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинШкольникамКарта сайта

Поздравляем!
Поздравляем нового Логобуржца лисенок со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Software Effort Estimation using Outlier Elimination Methods   Nazish Murtaza

Software Effort Estimation using Outlier Elimination Methods

68 страниц. 2012 год.
LAP Lambert Academic Publishing
Software engineering society has always faced the problems of accuracy of Software effort estimation. To advance the estimation accuracy of software effort, many studies have focused on effort estimation methods without any concern of data quality, although data quality is one of important factor to impact to the estimation accuracy. So I investigated the influence of outlier elimination upon the accuracy of software effort estimation through experiments applying two outlier elimination methods (K-means clustering and My-K-means clustering) and two effort estimation methods( Least squares and Neural network) associatively. A new outlier elimination method My-K-means clustering is proposed which gives better estimation results than K-means clustering. The experiments were performed using the Bank data set which consists of the project data performed in a bank in Pakistan, with or without outlier elimination.
 
- Генерация страницы: 0.05 секунд -