Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинКарта сайта

Поздравляем!
Поздравляем нового Логобуржца Лен-усь со вступлением в клуб!

Реклама

На сайте снова проблемы - решаем - ждите.
Не работает АВТОРИЗАЦИЯ - вход для пользователей не возможен.
Скорее всего, проблемы решить можно только переездом на другой сервер, другой компании.
А такой переезд возможен только в следующем месяце.
Пока других решений не вижу.
Извиняюсь за неудобства.

Ваш администратор.

КНИЖНЫЙ МИР

Passive and Active Sample Selection and Variance Discriminant Analysis   YU WEI

Passive and Active Sample Selection and Variance Discriminant Analysis

168 страниц. 2011 год.
LAP Lambert Academic Publishing
Among the many existing categories of face de- tection algorithms, the sample-based method is one of the most widely-used approaches. The essence of the sample-based method is to solve a two-class classification problem of face versus non-face. Many classification algorithms such as the Naive Bayesian, Neural Network and Support Vector Machines (SVM) have been used for this purpose. This thesis showcases a research study into face detection technologies. It has two main parts. Firstly, in the sample preparation section, new passive sample selection and active sample generation algorithms are proposed to assist existing sample-based algorithms in solving the problem of face detection. Secondly, in the classification section, a new Bayesian-based classification method is proposed for face detection.
 
- Генерация страницы: 0.04 секунд -