Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыДефектологияКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинШкольникамКарта сайта

Поздравляем!
Поздравляем нового Логобуржца ФАРМИК со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Web User Clustering and Surfing Recommendation   Yang Liu

Web User Clustering and Surfing Recommendation

124 страниц. 2012 год.
LAP Lambert Academic Publishing
The problem of modeling and predicting Web users’ browsing pattern has gained increasing attention. In this book, we present our methods for clustering and making recommendations to Web users and the applications to a real dataset generated by a Web-based knowledge management system, Livelink. The problem of clustering Web users and access sequences presents two unique challenges: the immense volume of data and the sequentiality of user navigation patterns. We propose to model user access sequences as stochastic processes, and a Mixture of Markov Model (MMM) based approach is taken to capture the sequential relationships inherent in user access histories. Several important issues that arise in constructing the model are addressed. The first issue lies in the complexity of the MMMs. To improve the efficiency of building/maintaining the models, we develop a light-weight adaptive algorithm to update the model parameters without evoking overhaul computations. The second issue involves...
 
- Генерация страницы: 0.05 секунд -