Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыДефектологияКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинШкольникамКарта сайта

Поздравляем нового Логобуржца лисенок со вступлением в клуб!



Clustering and Neural Network Approaches for General NN-Simulator   Chandan Srivastava

Clustering and Neural Network Approaches for General NN-Simulator

68 страниц. 2011 год.
LAP Lambert Academic Publishing
This book is based on the basis that clustering and neural networks methods. The clustering algorithms (k-means, and k-medoids) are describe the analysis on noise data i.e. preclassification for robust model development. The better choice of cluster are forming by Euclidean statistical clustering algorithms, are able to preclassified data into significant groups. We assume that both methods are better predicted on different example in real analysis. The recurrent backpropagation is one of the best optimization techniques for minimizing the error and achieve the best optimal result. Since we have input unit, output unit, and eventually hidden unit; we could say that this is supervised optimization learning process. The optimization process to minimizing the error and get the activated network till that all weight of the network are going to reach equilibrium state). This process usually take more time because every output of network add-up with input again and train network (weight) to...
- Генерация страницы: 0.05 секунд -