Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинКарта сайта

Поздравляем!
Поздравляем нового Логобуржца Алсуша со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Discovery of association rules in datasets via evolutionary algorithms   Ludovit Petrzala

Discovery of association rules in datasets via evolutionary algorithms

96 страниц. 2014 год.
LAP Lambert Academic Publishing
The work utilizes evolution computation techniques to induce association rules based on example data stored in big datasets. The main focus is especially on genetic algorithms, which represent a generic population-based metaheuristic optimization algorithm that uses solution space search mechanisms inspired by biologic evolution, such as recombination, mutation and evolutionary selection. The goal is to describe the process of designing and implementation of own genetic algorithm that will mine the association rules. This includes the definition of solution representation, their evaluation and specification of whole evolutionary cycle. The work composes of 5 main chapters. In the first chapters we specify the overall topic of association rules as a part of data mining and knowledge discovery. Later on we focus on evolutionary algorithms and current trends of their usage in data mining. We describe theoretical principles, methodology and techniques for mining association rules and...
 
- Генерация страницы: 0.04 секунд -