Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыДефектологияКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинШкольникамКарта сайта

Поздравляем!
Поздравляем нового Логобуржца feia2727 со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Novel Approaches to Dimensionality Reduction and Applications   Augustine Nsang

Novel Approaches to Dimensionality Reduction and Applications

204 страниц. 2011 год.
LAP Lambert Academic Publishing
Dimensionality reduction is becoming increasingly important in the field of machine learning. In this book, we outline several traditional methods of dimensionality reduction, which include random projections, principal component analysis, singular value decomposition, kernel principal component analysis and discrete cosine transform. We discuss several existing applications of random projections (or dimensionality reduction, in general). We also outline query-based dimensionality reduction methods that can be used for text, image and web data.In each of the traditional approaches to dimensionality reduction (named above), each attribute in the reduced set is actually a linear combination of the attributes in the original data set. In this book, we take the position that true dimensionality reduction is obtained when the set of attributes in the reduced set is a proper subset of the attributes in the original data set, and we discuss seven novel approaches which satisfy this...
 
- Генерация страницы: 0.06 секунд -