Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинКарта сайта

Поздравляем!
Поздравляем нового Логобуржца Алсуша со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Machine Learning for Text Document Relevance Ranking   Arpana Rawal,H. R. Sharma and Mahoj Kumar Kowar

Machine Learning for Text Document Relevance Ranking

180 страниц. 2014 год.
LAP Lambert Academic Publishing
The context oriented information retrieval has always been based on some or the other explicit ontologies. The emphasis is laid on on the Implicit Ontologies extracted from input text documents themselves. The research focuses upon design of a system (tool) to rank text documents available in machine-readable format by analyzing them upon softcopies of the syllabus content, through congenial content filtering techniques. The notion of n-gram co-occurrences is used to give the semantic interpretation to the core sentences and their neighboring components. The semantic depths of search key phrases can be learnt by analyzing term-to-term associations from the underlying conceptual dependencies of the extracted content. Two metric measures were chosen for exploring text-semantic depths namely, Topical boundaries and Topical vicinities. The degree of relative relevance was investigated by computing other relevance metric, contextual levels of term-significance from the filtered pages...
 
- Генерация страницы: 0.04 секунд -