Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинКарта сайта

Поздравляем!
Поздравляем нового Логобуржца Алсуша со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Time Series Analysis using Neural Networks   Ritu Vijay

Time Series Analysis using Neural Networks

60 страниц. 2012 год.
LAP Lambert Academic Publishing
Artificial neural networks are suitable for many tasks in pattern recognition and machine learning. Unlike conventional techniques for time series analysis, an artificial neural network needs little information about the time series data and can be applied to a broad range of problems. The usage of artificial neural networks for time series analysis relies purely on the data that were observed. As Radial Basis networks with one hidden layer is capable of approximating any measurable function. An artificial neural network is powerful enough to represent any form of time series. The capability to generalize allows artificial neural networks to learn even in the case of noisy and/or missing data. Another advantage over linear models is the network's ability to represent nonlinear time series. Prediction of tides is very much essential for human activities and to reduce the construction cost in marine environment. This book presents an application of the artificial neural network with...
 
- Генерация страницы: 0.04 секунд -