Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыДефектологияКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинШкольникамКарта сайта

Поздравляем!
Поздравляем нового Логобуржца tatbocman со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Collision detection system using computer vision on low power devices   Andreas Kalva

Collision detection system using computer vision on low power devices

84 страниц. 2014 год.
LAP Lambert Academic Publishing
A wide selection of stereo matching algorithms have been evaluated for the purpose of creating a collision avoidance module. Varying greatly in the accuracy, a few of the algorithms were fast enough for further use. Two computer vision libraries, OpenCV and MRF, were evaluated for their implementations of various stereo matching algorithms. In addition OpenCV provides a wide variety of functions for creating sophisticated computer vision programs and were evaluated on this basis as well. Two low-power platforms, The Pandaboard and the Beaglebone Black, were evaluated as viable platforms for developing a computer vision module on top. In addition they were compared to an Intel platform as a reference. Based on the results gathered, a fast, but simple, collision detector could be made using the simple block matching algorithm found in OpenCV. A more advanced detector could be built using semi-global stereo matching. These were the only implementations that were fast enough. The other...
 
- Генерация страницы: 0.04 секунд -