Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыДефектологияКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинШкольникамКарта сайта

Поздравляем нового Логобуржца Акулина со вступлением в клуб!



Network Intrusion Detection System using Machine Learning Techniques   Siva S. Sivatha Sindhu,S. Geetha and S. Selvakumar

Network Intrusion Detection System using Machine Learning Techniques

80 страниц. 2013 год.
LAP Lambert Academic Publishing
This book presents the need for intrusion detection system as it has become an essential concern with the growing use of internet and increased network attacks such as virus, Trojan horse, worms and creative hackers. In addition, the basic details about the historic origin of IDS, the types of IDS, their deployment schemes and general architecture are considered. IDS using various machine learning techniques like fuzzy logic, genetic algorithm, neural network, decision tree etc are discussed and their pros and cons are discussed. Another potential approach is ensemble learning, which have been successfully applied to IDS for differentiating normal and anomalous types. In this book, various ensemble approaches like neuro-genetic, neuro-fuzzy, neurotree etc are explained. The implementation of these IDS depends again on the requirement of the security administrator. The IDS discussed in this book are adaptive to new environments by updating the audit data with recent attacks. If new...
- Генерация страницы: 0.06 секунд -