Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинКарта сайта

Поздравляем!
Поздравляем нового Логобуржца Санара со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Embedding Privacy in Data Mining   Arik Friedman,Ran Wolff and Assaf Schuster

Embedding Privacy in Data Mining

148 страниц. 2011 год.
LAP Lambert Academic Publishing
In recent years, Privacy Preserving Data Mining has emerged as a very active research area. This field of research studies how knowledge or patterns can be extracted from large data stores while maintaining commercial or legislative privacy constraints. Quite often, these constraints pertain to individuals represented in the data stores. While data collectors strive to derive new insights that would allow them to improve customer service and increase sales, consumers are concerned about the vast quantities of information collected about them and how this information is put to use. The question how these two contrasting goals can be reconciled is the focus of this work. We seek ways to improve the tradeoff between privacy and utility when mining data. We address this tradeoff problem by considering the privacy and algorithmic requirements simultaneously, in the context of two privacy models that attracted considerable attention in recent years, k-anonymity and differential privacy. Our...
 
- Генерация страницы: 0.05 секунд -