Добро пожаловать в клуб

Показать / Спрятать  Домой  Новости Статьи Файлы Форум Web ссылки F.A.Q. Логобург    Показать / Спрятать

       
Поиск   
Главное меню
ДомойНовостиСтатьиПостановка звуковФайлыКнижный мирФорумСловарьРассылкаКаталог ссылокРейтинг пользователейЧаВо(FAQ)КонкурсWeb магазинКарта сайта

Поздравляем!
Поздравляем нового Логобуржца Светлана79 со вступлением в клуб!

Реклама

КНИЖНЫЙ МИР

Similarity Function With Temporal Factor In Collaborative Filtering   Meghna Khatri and Chhavi Rana

Similarity Function With Temporal Factor In Collaborative Filtering

56 страниц. 2012 год.
LAP Lambert Academic Publishing
Similarity function is the key to accuracy of collaborative filtering algorithms. Adding a time factor to it addresses the problem of handling the web data efficiently as it is highly dynamic in nature. The data used in collaborative filtering algorithms is collected over as long period of time, in the form of feedbacks, clicks, etc. The interest of user or popularity of an item tends to change as new seasons, moods or festivals. The similarity function with temporal factor can efficiently handle the dynamics of web data as it captures and assigns weightage to the data. More recent data is given more weightage when similarity is calculated. in this way, the recent trends and older and obsolete data values are discarded when new unobserved items are predicted using collaborative filtering algorithms. Hence, better results and more accuracy.
 
- Генерация страницы: 0.05 секунд -